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The availability of health monitoring devices that can be used independently, 

conveniently, and portably is increasing in line with busy lifestyles and the 

difficulty of scheduling medical tests. Measuring vital body signals with various 

devices makes measurements longer, less effective, and relatively more 

expensive. The proposed research can monitor vital body signals, such as 

heart rate, body temperature, respiratory rate, oxygen saturation, GSR, blood 

pressure, and snoring, which are integrated into a Raspberry Pi 4B-based 

device, with results displayed on an LCD screen. Data acquisition results show 

reasonably good accuracy in almost all parameters but require improvement 

in respiratory rate measurements. In the subsequent work, these seven 

acquisition data will be used to predict several possible diseases. 
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1. Introduction 

The rapid technological advancements and economic progress today have brought about changes in 

human life. These changes have made it necessary for humans to constantly compete in their lives. This 

often results in people not having enough time for routine health tests. Routine medical tests can provide 

insights into one's current health status, allowing diseases to be detected and prevented earlier 

(Grochala et al., [1]). Meanwhile, medical tests heavily rely on medical practitioners who must serve a 

large number of patients with limited automated monitoring tools. 

Therefore, the current circumstances have prompted the availability of health devices that can be 

used directly and easily but can assist individuals in monitoring their health in real-time without the need 

to always visit a doctor. 
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In line with emerging needs, modern technology, as a result of the digital era and scientific 

advancements, has had a positive impact on human life. Evolving modern technology in the field of 

healthcare plays a crucial role in helping to detect and prevent diseases as well as monitor patient health. 

Various vital signs of the body need to be monitored to determine an individual's health condition. 

There is a plethora of research that utilizes physiological signals of the body to assess human health. 

Gupta et al., [2] measures respiratory rate to assess human health, while Caldeira et al., [3] measures 

genital temperature in women to predict ovulation periods. Wu H et al.' et al., [4] utilizes neck vibrations 

to detect obstructive sleep apnea (OSA), whereas A.K. Jayanthy et al., [5] analyze OSA using ECG signals. 

Research by Filipa. E et al., [6] calculates heart rate variability (HRV) estimates through PPG signals to 

detect heart abnormalities. Additionally, studies by Anusha. A et al., [7], Ali. R et al., [8], and Gita. R et 

al.,  [9] all detect electrodermal activity to identify various factors such as stress levels, hydration levels, 

and pain levels. 

Conventional physical check-ups require various different devices, performed separately and take 

longer time. Therefore, researchers have been striving to create a single device capable of measuring 

multiple parameters using multiple sensors. The challenge they face is how to create a low-cost wearable 

device that is also highly reliable and multifunctional. 

Several studies have utilized multi-sensors with various parameters to comprehensively evaluate 

human health. For example, Nosirov et al., [10] measured air quality parameters using MQ135, heart 

rate, accelerometer, air pressure, sound detection, temperature, humidity, and patient location. This 

study focused more on measuring the environmental parameters around the patient to assess their 

impact on the patient. Yu Y et al., [11] designed a smart armband capable of measuring temperature, 

pulse, and position parameters using a triaxial accelerometer. This armband is very lightweight, weighing 

only 42 grams. However, it only includes 2 sensors to measure physiological signals and is primarily 

focused on monitoring elderly people. 

Seulki. L et al., [12] designed a low-power consumption device to simultaneously measure 

electrocardiogram (ECG), bio-impedance (BioZ), photoplethysmograph (PPG), galvanic skin response 

(GSR), and heart sounds. However, this research used two microcontrollers and was specifically designed 

to detect congestive heart failure. Budi. N et al., [13] also detected coronary heart disease early using 

parameters such as cholesterol, blood pressure, and heart rate. 

Meanwhile, Liu. J et al et al., [14] used a chest-mounted belt system to place sensors measuring ECG, 

respiration, temperature, and patient movement for monitoring, especially for elderly people. However, 

in this study, data collected by all these sensors were directly stored on a mobile device, limiting storage 

capacity. 

There are also multi-sensor research studies using commercially available boards, as seen in the 

research conducted by Norhayati. Mohd et al., [15]. This study utilized an e-Health Platform and 

parameters such as temperature, pulse oximeter, and air flow for continuous human health monitoring. 

However, the product is relatively expensive and has been discontinued. 

Grochala et al., earch [1] monitored daily activities using multiple parameters, including ECG, 

respiration, body temperature, barometric pressure, light intensity, and accelerometer. Unfortunately, 

this research still relies on a personal computer as the data processor, making it non-portable. Our 

previous research, conducted by P. Madona et al., [16] and [17], used five physiological signal 

parameters to assess human stress levels. The parameters employed included GSR, Pulse, respiration 

rate, blood pressure, and body temperature. Aamir. A et al., [18] also classified human stress levels using 
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electroencephalograph (EEG), GSR, and PPG parameters. All three studies primarily focused on using 

these parameters to detect stress levels. 

Upon closer examination, several studies with different disease or condition detection focuses 

actually utilize some of the same parameters. Therefore, in this research, we propose a device for health 

monitoring with various sensors for different disease detections. Our signal acquisition system is built 

using seven sensors, and the variations in future research can be employed to detect various conditions 

such as arrhythmia, OSA, and human stress levels. 

 

2. Materials and Methods 

Figure 1 illustrates the block diagram of the proposed prototype. There are 7 parameters to be 

acquired, namely temperature, snoring, pulse, respiration, GSR (Galvanic Skin Response), oxygen 

saturation, and blood pressure. The relationship between the components and the Raspberry Pi is 

depicted in the schematic diagram in Figure 2. 

 

   
Fig. 1. Block Diagram of Multisensory Health Monitoring Device 
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Fig. 2. Schematic Circuit of the Multisensory Health Monitoring Device 

 

2.1 Body Temperature Monitoring Using DS18B20 

 

The DS18B20 sensor, as seen in Figure 3, is a digital sensor equipped with an internal 12-bit ADC and 

is employed for monitoring body temperature. This sensor boasts exceptional accuracy. With a reference 

voltage of 5V, the smallest detectable change is 5/(212-1)=0.0012 Volts. The DS18B20 sensor maintains 

an accuracy of 0.5°C within a temperature range spanning from 10°C to +85°C. Communication with the 

DS18B20 sensor is established using the 1-Wire (One Wire) protocol, and it is connected to Pin GPIO4 

(GPCLK0) on the Raspberry Pi. This sensor will be placed on the fold of the arm. 

 

   
Fig. 3. Temperature Sensor DS18B20 

 
 

2.2  Heart Rate Monitoring Using Pulse Sensor 

 

A pulse sensor is used for heart rate monitoring. The pulse sensor detects heart rate by measuring 

fluctuations in the reflected LED signal, which are influenced by the density of blood flow on the skin's 
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surface. The surface of the LED light reflectivity is the skin on the finger. The value of Beats Per Minute 

(BPM) can be obtained from this sensor. Since the Raspberry Pi lacks an analog pin, the detection data 

from the sensor is then received by the Raspberry Pi via the GPIO pin, specifically by adding the 

ADS1115ADC module as an analog to digital data converter. The information is entered into BPM. To 

obtain heart rate information the program gets the peak and the trough values. In the process of getting 

the BPM value, a threshold is given to get the BPM value from the sensor readings. The determination 

of this threshold value is based on the sensor output signal which is displayed on the signal plotter when 

the sensor detects a pulse at the fingertip. These sensors will be mounted at the fingertip, as depicted 

in Figure 4. 

 
Fig. 4. Pulse Sensor (left) and its placement (right). 

 

2.3  Snore Monitoring 

Piezo sensors are used to detect snoring while sleeping. This piezo sensor later is placed on the neck 

of humans, which is a part of the body that vibrates during sleep when snoring. The vibration of the 

analog signal is altered by the piezo sensor in the form of voltage. On the raspberry pi, this analog signal 

then is converted to a digital signal. The sensor's output is the number of snoring occurrences per hour 

(SBI/Hour).  

The number of snores in one hour is calculated in the same manner as the BPM value on the pulse 

sensor. A threshold value is be determined during the data collection process to determine the number 

of snores from the ADC sensor readings. Because there is no calibrated snoring detection device, this 

threshold value is determined by comparing the sensor output signal displayed on the signal plotter 

when the sensor detects a vibration in the neck when snoring occurs with the results of the comparison 

test of the snore value calculated manually by the operator. The snore sensor will be positioned on the 

subject's neck to obtain vibration data when the subject snores, as shown in Figure 5. 

        
Fig. 5. Snore Sensor (left) and its placement (right) 

 

2.4 Respiration Rate Monitoring Using Piezoelektrik  

Piezoelectric sensors are employed to detect respiration through the movement of the diaphragm. 

When the diaphragm expands, the piezoelectric sensor is compressed by this diaphragmatic 
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movement. This compression generates voltage, which is then read by the Raspberry Pi. Therefore, 

the sensor is placed around the chest of the test subject, as depicted in Figure 6. 

 

  

    
Fig. 6. Respiration sensor (left) and its placement (right) 

 

2.5 GSR Monitoring 

The GSR or Galvanic Skin Response sensor is used to measure skin conductivity values. Testing is 

conducted by placing the GSR sensor electrodes on both fingers, ensuring that the electrodes make 

contact with the skin on the palm of the hand. The GSR sensor and its placement can be observed 

in Figure 7. 

 

    
Fig. 7. Respiration sensor (left) and its placement (right) 

 

2.6 Oxigen Saturation Using MAX30100 

The Max30100 is a sensor capable of measuring oxygen saturation in the body. In arterial blood 

vessels, oxygen saturation is defined as the ratio of HbO2 (Oxyhemoglobin) to Hb 

(deoxyhemoglobin). HbO2 (Oxyhemoglobin) is hemoglobin that is fully bound to oxygen. To 

measure oxygen levels in the blood, an oximeter operates by exploiting the natural pulsation of 

blood flow in the arteries and the properties of hemoglobin's ability to absorb light. In this process, 

infrared light is absorbed more by oxygen-rich hemoglobin, while red light is absorbed by 

hemoglobin lacking oxygen. The values detected are then used to determine the amount of oxygen 

in the blood. The placement of this sensor is at the fingertip, as shown in Figure 8. 
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Fig. 8. MAX30100 Module  (left) dan peletakkannya (right) 

 

2.7 Blood Pressure Using MPX5050DP 

  

The blood pressure acquisition device comprises several components, namely the MPX5050DP 

sensor as the pressure sensor, a motor pump to inflate the cuff with air, a solenoid valve to regulate the 

release of air from the cuff, and the cuff itself, which is placed on the upper arm of the test subject to 

obtain blood pressure data. The MPX5050DP sensor and the cuff used can be seen in Figure 9. 

 

   
Fig. 9. MPX5050DP Pressure Sensor (left) and handcuff (right) 

 

3. Results And Discussion 

Figure 10 depicts the Raspberry Pi-based multisensory health monitoring prototype with the sensors 

employed. These sensors will be simultaneously attached and their data collected from the test subject. 

 

   
Fig. 10. Prototype Proposed System 
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3.1  Pulse Sensor Test  

The pulse sensor measures heart rate using signal fluctuations caused by blood flow. This sensor is 

located at the fingertips. The pulse sensor test's accuracy in producing Beat Per Minute (BPM) 

variables is determined by comparing the sensor's results with heart rate measurements on the 

OMRON sphygmomanometer, as shown in Figure 11 (left). The resulting signal is shown in Figure 12 

(right). Pulse sensor testing was performed on eight test subjects, each of whom was tested three 

times. 

 

   
Fig. 11. Pulse Sensor Test and validation using OMRON sphygmomanometer 

(left) and Output Signal on Pulse Sensor (right) 

 

Table 1 shows the results of testing the accuracy of heart rate measurements using the Pulse sensor 

compared to the OMRON sphygmomanometer. 

      Table 1 

      Heart Rate Test Results Accuracy 

Subject 
BPM  

(Sensor Pulse) 
BPM (Omron) % Error 

1 

80 78 2.50 

80 79 1.25 

72 71 1.39 

2 

78 80 2.56 

79 78 1.27 

63 65 3.17 

3 

68 69 1.47 

65 66 1.54 

77 74 3.90 

4 

89 92 3.37 

88 87 1.14 

68 70 2.94 

5 

70 75 7.14 

73 75 2.74 

68 70 2.94 

6 

90 88 2.22 

93 89 4.30 

70 74 5.71 
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7 

65 69 6.15 

66 69 4.55 

69 72 4.35 

8 

73 72 1.37 

72 70 2.78 

72 71 1.39 

ERROR RATE 1.05 

 

The smallest error percentage is 0%, and the largest error percentage is 6.15%, according to the 

results of heart rate testing with a total of 8 test subjects in Table 3. Errors can occur due to noise during 

the recording of the heart signal as well as an incorrect position of the sensor on the fingertip. The 

average error rate produced is 1.05%. Figure 6 Illustrates a comparison of data from the pulse sensor 

output and the results of the OMRON sphygmomanometer measurement. 

 

   
Fig. 12 Comparison of Pulse Sensor Output with OMRON 

sphygmomanometer 

          

3.2 Temperature Sensor Test 

 

The DS18B20 temperature sensor data is retrieved continuously for 60 seconds. The reading results 

then be displayed on the LCD display in degrees Celsius (oC). Temperature sensor testing was performed 

on eight subjects, each of whom was tested three times. The sensor readings are compared to those of 

a calibrated digital thermometer. 

Table 2 is the result of the body temperature detection test using the DS18B20 temperature sensor 

and compared with a digital thermometer. As shown in table 2, the comparison of the DS18B20 

temperature sensor reading with a digital thermometer has the smallest error of 0.1% and the largest 

error percentage of 2.7%, with the average error of all data collection being 0.259%. Figure 8 illustrates 

a graph comparing the sensor's output temperature data to that of a calibrated digital thermometer. 
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Fig. 13 Hand installation of the Temperature 

Sensor and direct comparison with a digital 

thermometer 

 

 

    Table 2 

    Heart Rate Test Results Accuracy 

Subject 
Temperature 

(Sensor) 

Temperature 

(Thermometer) 
% Error 

1 

33.53 33.6 0.2083 

34.32 33.9 1.2389 

34.16 34.3 0.4082 

2 

34.29 34.8 1.4655 

35.82 35.2 1.7614 

35.43 35.3 0.3683 

3 

34.20 35.1 2.5641 

35.20 35.4 0.5650 

34.50 34.2 0.8772 

4 

35.88 35.9 0.0557 

34.42 34.4 0.0581 

35.40 35.2 0.5682 

5 

35.56 35.6 0.1124 

35.32 35.2 0.3409 

35.71 35.8 0.2514 

6 

35.33 34.4 2.7035 

36.14 36.1 0.1108 

34.94 35.3 1.0198 

7 
36.12 35.6 1.4607 

34.52 34.56 0.1157 
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36.40 35.7 1.9608 

8 

36.21 36.3 0.2479 

36.28 35.8 1.3408 

36.36 36.2 0.4420 

 ERROR RATE  0.259 

 

 

3.3 Snore Sensor Test 

The snore sensor test was performed on five subjects, with each subject collecting data only once. 

Piezo sensors are very sensitive, so when the sensor's surface is touched, it produces a small voltage 

that can be seen on the Piezo sensor detection signal plot. A piezo sensor is used in this tool to 

detect the number of snoring episodes that occur in patients in one hour. When the sensor detects 

snoring, it generates analog data in the form of voltage, which is then converted into digital data 

using an ADC converter. Figure 14 illustrates the snoring sensor output signal. The accuracy obtained 

by comparing sensor snoring calculations to manual calculations is shown in Table 3.  

 

 
Fig. 14. Output signal of the snore sensor with the red 

line as the threshold value 

 

Table 3 

 Snoring Sensor Test Results 

Subject 
Snore 

(Sensor) 

Snore 

 (Manual) 
%Error 

A 113 102 10.78 

B 110 99 11.11 

C 115 108 6.48 

D 110 103 6.80 

E 122 110 10.91 

 ERROR RATE  9.22 

 

Table 3 shows that the smallest percentage error is 6.48%, while the largest percentage error is 

11.11%. The overall data collection error rate is 9.22%. There are several possible causes for the 
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device detecting more snoring than was manually calculated, including the occurrence of neck 

movement and swallowing activity during data collection, which causes additional vibrations to 

be detected by the sensor and exceed the specified threshold, causing the sensor to be considered 

snoring. To improve the accuracy of snoring data collection, better sensors, as well as determining 

the threshold and separation between snoring and non-snoring, are required. 

 

3.4 Oxigen Saturation Test 

 

 
Fig. 15. Oxygen saturation testing (left) and its validation 

using a commercial oximeter (right). 

 

Figure 15 represents the data readings from the MAX30100 sensor used and then compared with a 

calibrated commercial device. The test results data is presented in Table 4. It is observed that after 

conducting 10 measurements, an average error percentage of 2.06% was obtained. 

 

Table 4 

 Oxigen Saturation Test Results 

NO. Subject 

SENSOR MAX30100 
ERROR 

(%) 
MAX30100 Comercial 

SPO2 SPO2 

1 
1 

100 99 1.01% 

2 99 97 2.06% 

3 
2 

98 97 1.03% 

4 92 94 2.13% 

5 
3 

100 97 3.09% 

6 95 97 2.06% 

7 
4 

100 98 2.04% 

8 96 99 3.03% 

9 
5 

100 97 3.09% 

10 97 98 1.02% 

                                    Mean Error 2.06% 

 

3.5 Respiration Rate Test 

The output signal from the respiration sensor is visible in Figure 16, and the results of the 

measurement of respiratory frequency in one minute using the piezoelectric sensor and manual 
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calculation are shown in Table 5. It can be seen that the average error percentage from 5 tests is 

7.00%. The error occurs due to the presence of noise that arises when the subject is moving or 

speaking. 

 
Fig. 16. Respiratory Sensor Signal 

 

Table 5 

 Respiration Rate Test Results 

No 
Respiration 

Sensor 

Repiration with 

manual 

calculation 

Error 

(%) 

1 13 14 7.14 

2 16 16 0.00 

3 15 13 15.38 

4 20 21 4.76 

5 12 13 7.69 

Mean Error (%) 7.00 

3.6 GSR Test 

The GSR or Galvanic Skin Response sensor is used to measure skin conductance values. Testing is 

conducted by attaching GSR sensor electrodes to both fingers, ensuring that the electrodes make 

contact with the skin on the palm of the hand. GSR measurement is done by comparing the sensor 

output results in ohms with theoretical skin resistance calculations in ohms, as shown in Table 6. 

The testing was performed on 4 subjects and repeated for data collection 3 times. The average error 

obtained from the testing is 0.54%. 

 Table 6 

 GSR Test Results and their comparison with theoretical calculations. 

 

 

 

 

 

 

 

 

 

Subject ADC Value 
Skin Resistance with 

Sensor (Ω)  

Skin Resistance with 

theoretical 

calculations (Ω) 

Error (%) 

1 313 83644 82914.57 0.88 

289 72506.86 71838.56 0.93 

319 86352.92 85567.01 0.92 

2 321 87684.84 87225.13 0.53 

333 94922.05 94413.4 0.54 

343 101626.86 101183.43 0.44 

3 430 230153.39 229756.09 0.17 

430 230153.39 229756.09 0.17 

428 226060.84 223809.52 1.01 

4 395 156905.06 155042.73 1.20 

400 164054.34 162857.14 0.74 

388 145306.02 145161.29 0.10 

Mean Error 0.54 
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3.7 Blood Pressure Test 

The blood pressure detection circuit consists of the MPX5050dp sensor and a signal conditioning 

circuit. The MPX5050dp sensor is responsible for acquiring the measured blood pressure data. Blood 

pressure is the result of blood circulation in the human body. Blood pressure reaches its maximum 

when the heart contracts to pump blood, known as systolic pressure. When the heart is at rest 

between two contractions, blood pressure reaches its minimum value, known as diastolic pressure. 

By applying an air-filled cuff to the arm and inflating it to a certain pressure, the pressure sensor 

receives pressure signals from the cuff, which are then interpreted as systolic or diastolic pressure 

through the Raspberry Pi 4B.  

Blood pressure measurement tests were conducted on 9 subjects. The measurement results will be 

compared simultaneously with the results from the commercial OMRON device. The comparison of 

blood pressure readings between the MPX5050dp sensor and Omron is shown in Table 7, where it 

can be seen that the average error percentage from 9 tests is 6.63% for systolic readings and 5.53% 

for diastolic readings. 

 

Table 7 

The results of blood pressure testing using the device and the commercial OMRON 

device 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

In this study, seven body signals were monitored with high accuracy, including BPM, body 

temperature, GSR, blood pressure and oxygen saturation. However, improvements in measuring the 

amount of snoring and respiration rate are still required. In future work, the already developed wearable 

sensor will be integrated with data processing using artificial intelligence to become a wearable 

telemedical health monitoring system capable of predicting various diseases. 
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NO. 

Blood Pressure 

(MPX550DP) 

Blood Pressure 

Omron 
Error (%) 

Systolic Diastolic Systolic Diastolic Systolic Diastolic 

1 120 76 126 79 4.76 3.80 

2 128 81 128 80 0.00 1.25 

3 126 80 125 82 0.80 2.44 

4 119 76 127 78 6.30 2.56 

5 136 87 121 78 12.40 11.54 

6 119 76 106 75 12.26 1.33 

7 142 84 137 84 3.65 0.00 

8 115 71 127 84 9.45 15.48 

9 125 74 139 82 10.07 9.76 

Average  Systolic Error 6.63 

Average  Diastolic Error 5.35 
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